# Bristol Bay Sockeye Salmon In-season release \#8 

Ray Hilborn,Brandon Chasco, Chris Boatright
University of Washington
July 5, 2010

## 1 Forecast summary

Given the data to date our forecast for the Bristol Bay sockeye return remains at 35 million. Indications of run strength based on the cumulative daily catch plus escapement to date are similar to the pre-season forecast, but different from the forecasts based solely on the Port Moller cumulative index and age composition (table 1). The Port Moller forecast has increased slightly but the index is still lagging behind recent years (table 2). After several days of relatively low daily catch and escapement, the forecast based on the catch and escapement has come down considerably, but it is still higher than either the preseason forecast or the Port Moller forecast.

Table 1: 2010 FRI in-season forecast (in thousands) summary.

| Forecast | Today's forecast | previous forecast |
| :--- | ---: | ---: |
| Pre-season forecast | 39,724 | 39,724 |
| Age-specific Port Moller | 27,100 | 25,000 |
| Catch \& escapement | 44,800 | 55,000 |
|  | 35,000 | 35,000 |
| In-season forecast |  |  |

Table 2: Cumulative FRI Port Moller index (sum of the sockeye catch hour ${ }^{-1}$ fished for stations 2 through 12, with interpolations for missing stations) by day and year from 1990-2010 (1990-1999 next page), and total returns.

| Date | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | $\mathbf{2 0 1 0}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| June 10 | 125 | 16 | 37 | 16 | 34 | 44 | 13 | 35 | 13 | 18 | $\mathbf{3}$ |
| June 11 | 234 | 25 | 106 | 25 | 70 | 123 | 42 | 60 | 22 | 36 | $\mathbf{3 6}$ |
| June 12 | 468 | 45 | 178 | 45 | 106 | 212 | 51 | 91 | 104 | 98 | $\mathbf{3 9}$ |
| June 13 | 682 | 76 | 243 | 76 | 196 | 242 | 72 | 126 | 210 | 174 | $\mathbf{4 3}$ |
| June 14 | 866 | 157 | 448 | 157 | 294 | 350 | 139 | 171 | 254 | 237 | $\mathbf{9 3}$ |
| June 15 | 1111 | 258 | 654 | 258 | 422 | 428 | 210 | 201 | 362 | 317 | $\mathbf{1 2 7}$ |
| June 16 | 1323 | 511 | 842 | 511 | 584 | 630 | 374 | 278 | 423 | 519 | $\mathbf{1 7 8}$ |
| June 17 | 1532 | 621 | 995 | 621 | 781 | 823 | 572 | 388 | 590 | 804 | $\mathbf{2 0 8}$ |
| June 18 | 1707 | 710 | 1129 | 710 | 925 | 1038 | 740 | 524 | 918 | 981 | $\mathbf{3 6 3}$ |
| June 19 | 1947 | 763 | 1293 | 763 | 1209 | 1275 | 1045 | 594 | 1178 | 1263 | $\mathbf{4 5 3}$ |
| June 20 | 2288 | 907 | 1550 | 907 | 1353 | 1377 | 1272 | 674 | 1579 | 1535 | $\mathbf{6 6 7}$ |
| June 21 | 2551 | 1073 | 1764 | 1073 | 1671 | 1565 | 1562 | 858 | 1910 | 1851 | $\mathbf{9 2 4}$ |
| June 22 | 2814 | 1211 | 2037 | 1211 | 1912 | 1779 | 1790 | 1015 | 2389 | 2156 | $\mathbf{1 3 0 1}$ |
| June 23 | 3238 | 1547 | 2371 | 1547 | 2052 | 1990 | 2272 | 1240 | 2761 | 2429 | $\mathbf{1 5 7 2}$ |
| June 24 | 3571 | 1747 | 2720 | 1747 | 2329 | 2238 | 2703 | 1597 | 3246 | 2609 | $\mathbf{1 7 9 9}$ |
| June 25 | 3896 | 1953 | 3029 | 1953 | 2777 | 2514 | 3188 | 1687 | 3910 | 2839 | $\mathbf{1 9 3 2}$ |
| June 26 | 4160 | 2087 | 3329 | 2087 | 3196 | 2866 | 3670 | 2068 | 4344 | 3567 | $\mathbf{2 0 9 3}$ |
| June 27 | 4463 | 2522 | 3605 | 2522 | 3810 | 3312 | 3992 | 2507 | 5101 | 4121 | $\mathbf{2 2 6 8}$ |
| June 28 | 4813 | 2900 | 3914 | 2899 | 4216 | 3670 | 4609 | 2967 | 5640 | 4765 | $\mathbf{2 4 1 3}$ |
| June 29 | 5102 | 3264 | 4196 | 3263 | 4578 | 4060 | 5164 | 3239 | 6040 | 5400 | $\mathbf{2 5 4 1}$ |
| June 30 | 5359 | 3350 | 4350 | 3350 | 4882 | 4258 | 5395 | 3581 | 6625 | 6039 | $\mathbf{2 6 9 0}$ |
| July 1 | 5577 | 3458 | 4510 | 3458 | 5012 | 4623 | 5587 | 3755 | 7235 | 6654 | $\mathbf{3 0 7 0}$ |
| July 2 | 5781 | 3622 | 4665 | 3622 | 5283 | 4895 | 5955 | 3969 | 7870 | 7019 | $\mathbf{3 3 5 1}$ |
| July 3 | 5937 | 3810 | 4817 | 3809 | 5507 | 5066 | 6465 | 4176 | 8172 | 7362 | $\mathbf{3 7 4 0}$ |
| July 4 | 6097 | 4008 | 5009 | 4008 | 5666 | 5254 | 6673 | 4406 | 8553 | 7722 | $\mathbf{3 9 6 3}$ |
| July 5 | 6279 | 4237 | 5175 | 4237 | 6028 | 5503 | 6965 | 4607 | 9019 | 8037 |  |
| July 6 | 6436 | 4496 | 5252 | 4496 | 6277 | 5715 | 7399 | 5121 | 9570 | 8284 |  |
| July 7 | 6587 | 4728 | 5279 | 4728 | 6392 | 5975 | 7678 | 5346 | 9911 | 8496 |  |
| July 8 | 6690 | 4933 | 5323 | 4934 | 6504 | 6246 | 7991 | 5592 | 10156 | 8675 |  |
| July 9 | 6838 | 5112 | 5409 | 5113 | 6600 | 6495 | 8224 | 5747 | 10422 | 8821 |  |
| Total run | 30 | 24 | 17 | 27 | 44 | 40 | 44 | 46 | 42 | 40 |  |

Table 2 (continued) - 1990-1999 from previous page

| Date | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | $\mathbf{2 0 1 0}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| June 10 | 18 | 18 | 65 | 45 | 14 | 130 | 111 | 31 | 23 | 38 | $\mathbf{3}$ |
| June 11 | 45 | 45 | 105 | 89 | 23 | 230 | 234 | 76 | 49 | 93 | $\mathbf{3 6}$ |
| June 12 | 88 | 66 | 198 | 157 | 47 | 333 | 291 | 103 | 67 | 146 | $\mathbf{3 9}$ |
| June 13 | 119 | 87 | 307 | 340 | 74 | 522 | 356 | 168 | 107 | 178 | $\mathbf{4 3}$ |
| June 14 | 171 | 134 | 355 | 490 | 124 | 676 | 493 | 231 | 152 | 216 | $\mathbf{9 3}$ |
| June 15 | 249 | 233 | 460 | 687 | 176 | 887 | 596 | 356 | 222 | 268 | $\mathbf{1 2 7}$ |
| June 16 | 291 | 347 | 588 | 916 | 214 | 1064 | 829 | 441 | 315 | 315 | $\mathbf{1 7 8}$ |
| June 17 | 387 | 486 | 676 | 1178 | 302 | 1381 | 963 | 507 | 392 | 396 | $\mathbf{2 0 8}$ |
| June 18 | 519 | 696 | 887 | 1399 | 427 | 1637 | 1152 | 688 | 489 | 567 | $\mathbf{3 6 3}$ |
| June 19 | 675 | 866 | 1173 | 1669 | 539 | 1812 | 1279 | 846 | 599 | 741 | $\mathbf{4 5 3}$ |
| June 20 | 858 | 1127 | 1369 | 1998 | 754 | 2096 | 1538 | 980 | 760 | 908 | $\mathbf{6 7 7}$ |
| June 21 | 979 | 1508 | 1681 | 2444 | 992 | 2356 | 1772 | 1209 | 888 | 1044 | $\mathbf{9 2 4}$ |
| June 22 | 1123 | 1695 | 1942 | 2763 | 1346 | 2684 | 1964 | 1429 | 1021 | 1278 | $\mathbf{1 3 0 1}$ |
| June 23 | 1425 | 2068 | 2225 | 3039 | 1673 | 2906 | 2175 | 1641 | 1201 | 1614 | $\mathbf{1 5 7 2}$ |
| June 24 | 1754 | 2236 | 2496 | 3560 | 1948 | 3219 | 2492 | 1824 | 1348 | 1990 | $\mathbf{1 7 9 9}$ |
| June 25 | 2001 | 2417 | 2868 | 4034 | 2250 | 3563 | 2754 | 2023 | 1505 | 2258 | $\mathbf{1 9 3 2}$ |
| June 26 | 2304 | 2779 | 3006 | 4512 | 2561 | 3926 | 3089 | 2347 | 1676 | 2432 | $\mathbf{2 0 9 3}$ |
| June 27 | 2914 | 3009 | 3257 | 4959 | 2900 | 4326 | 3342 | 2662 | 1904 | 2883 | $\mathbf{2 2 6 8}$ |
| June 28 | 3381 | 3292 | 3540 | 5282 | 3236 | 4783 | 3625 | 2932 | 2263 | 3125 | $\mathbf{2 4 1 3}$ |
| June 29 | 3966 | 3477 | 3861 | 5837 | 3757 | 5151 | 3821 | 3238 | 2531 | 3533 | $\mathbf{2 5 4 1}$ |
| June 30 | 4402 | 3717 | 4258 | 6266 | 4130 | 5594 | 4120 | 3432 | 2865 | 3847 | $\mathbf{2 6 9 0}$ |
| July 1 | 4952 | 3897 | 4714 | 6735 | 4534 | 6002 | 4357 | 3741 | 3032 | 4203 | $\mathbf{3 0 7 0}$ |
| July 2 | 5418 | 4315 | 5030 | 7070 | 4848 | 6429 | 4681 | 4247 | 3386 | 4614 | $\mathbf{3 3 5 1}$ |
| July 3 | 5964 | 4523 | 5376 | 7298 | 5349 | 6724 | 4938 | 4410 | 3615 | 4955 | $\mathbf{3 7 4 0}$ |
| July 4 | 6199 | 4857 | 5746 | 7563 | 5749 | 7065 | 5370 | 4705 | 3952 | 5292 | $\mathbf{3 9 6 3}$ |
| July 5 | 6986 | 5059 | 6078 | 7790 | 6071 | 7413 | 5568 | 5033 | 4218 | 5761 |  |
| July 6 | 7805 | 5210 | 6372 | 7999 | 6338 | 7841 | 5910 | 5261 | 4337 | 6174 |  |
| July 7 | 8652 | 5399 | 6632 | 8107 | 6622 | 8098 | 6028 | 5436 | 4571 | 6459 |  |
| July 8 | 9522 | 5617 | 6990 | 8270 | 6767 | 8347 | 6257 | 5705 | 4825 | 6824 |  |
| July 9 | 10408 | 5766 | 7096 | 8377 | 6984 | 8625 | 6585 | 5953 | 5079 | 7165 |  |
| Total run | 50 | 44 | 48 | 50 | 53 | 64 | 39 | 21 | 20 | 43 |  |

## 2 Port Moller genetics

The Nushagak and Naknek/Kvichak districts are dominating the genetics at this time. Table 3 shows the district proportions in the Port Moller genetics, the pre-season, and the predicted in-shore stock composition. The predicted in-shore stock composition accounts for the temporal and spatial selectivity of the Port Moller sampling design. Based on a historical comparison of the Port Moller samples and the observed in-shore returns, the Moller sampling design selects for more Ugashik fish compared to other districts, with Naknek/Kvichak being the least selected for.

Table 3: Cumulative Port Moller genetics composition based on most recent samples, and the pre-season and predicted in-shore stock composition.

|  | District |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Date | Ugashik | Egegik | Nak/Kvi | Nushagak | Togiak |
| Port Moller | 0.07 | 0.27 | 0.31 | 0.35 | 0.001 |
| Pre-season | 0.16 | 0.26 | 0.30 | 0.26 | 0.02 |
| Predicted in-shore | 0.05 | 0.26 | 0.39 | 0.30 | 0.01 |

## 3 Catch and escapement to date: a summary by district

Catch and escapement continues to suggest a strong run. While the Ugashik is well ahead of our pre-season forecast, the later arrival timing of this district means small differences in cumulative catch and escapement to date can result in considerable differences in projected run size at this point in time. We expect the Ugashik run to come more in-line with the pre-season forecast as the season progresses.

The following sections give an overview of the age composition and catch plus escapement to date for each district. We provide estimates of run size by district based on average arrival timing, and if the run is one day early or one day late.

### 3.1 Ugashik

Based on the catch plus escapement to date, the Ugashik district is ahead of our pre-season forecast (figure 1), but this difference is unlikely to remain. We are not seeing the 1.2 s in the catch that we had anticipated in our pre-season forecast (table 4). When the 1.2 s fail to appear in the catch in any district it could be due to the fact that there are no 1.2 s , or that they are escaping through the nets in the districts. We will know more when age composition from the Ugashik escapement become available.

Table 4: Pre-season and in-season (based on catch and escapement) age composition for the Ugashik district. The Port Moller age composition is an aggregate sample of all of the fish caught in the test fishery. The Port Moller age composition has also been changed to account for the size selectivity of test fishery net.

|  | Age |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
| Sampling location | 1.2 | 1.3 | 2.2 | 2.3 |
| Preseason | 0.55 | 0.2 | 0.14 | 0.12 |
| Catch and esc. | 0.11 | 0.54 | 0.19 | 0.15 |
| Port Moller | 0.36 | 0.42 | 0.16 | 0.07 |

Figure 1: Observed cumulative catch plus escapement to date for the Ugashik district (black dots). The solid black line is the projected cumulative run for 2010 assuming normal run timing. The upper and lower dashed lines are the projected cumulative run, assuming the run is one day late or one day early, respectively. The vertical grey line is the average mid-point of the run, and the horizontal red line is the pre-season forecast.


### 3.2 Egegik

Egegik is falling behind the pre-season forecast (figure 2). The age composition appears similar to our pre-season forecast with exception of the 2.3 s (table 5). There was increased uncertainty about the 3.8 million preseason forecast for Egegik 2.3s given that the 2.3 returns have only approach 4 million once in the last ten years.

Table 5: Pre-season and in-season (based on catch and escapement) age composition for the Egegik district. The Port Moller age composition is an aggregate sample of all of the fish caught in the test fishery. The Port Moller age composition has also been changed to account for the size selectivity of test fishery net.

|  | Age |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
| Sampling location | 1.2 | 1.3 | 2.2 | 2.3 |
| Preseason | 0.11 | 0.13 | 0.39 | 0.37 |
| Catch and esc. | 0.12 | 0.20 | 0.45 | 0.22 |
| Port Moller | 0.36 | 0.42 | 0.16 | 0.07 |

Figure 2: Observed cumulative catch plus escapement to date for the Egegik district (black dots). The solid black line is the projected cumulative run for 2010 assuming normal run timing. The upper and lower dashed lines are the projected cumulative run, assuming the run is one day late or one day early, respectively. The vertical grey line is the average mid-point of the run, and the horizontal red line is the pre-season forecast.


### 3.3 Naknek/Kvichak

The cumulative catch plus escapement to date for the Naknek/Kvichak district coincides with our pre-season forecast (figure 3). We expect the age composition to change toward a higher proportion of 1.2 in the coming days due to increasing numbers of later arriving Kvichak fish. Our Kvichak pre-season forecast was $47 \% 1.2$, and the fish currently being caught in the Kvichak section of the Naknek/Kvihcak district are running $38 \%$ 1.2. This is catch only and the proportion should increase as escapement age composition become available. There is also a high proportion of 1.2 fish in initial estimates of Naknek escapement ( $34 \%$ versus our preseason forecast of $18 \%$ ), but again this may be due to smaller fish getting passed the commercial nets and the sample of fish that have been aged is very small.

Table 6: Pre-season and in-season (based on catch and escapement) age composition for the Naknek/Kvichak district. The Port Moller age composition is an aggregate sample of all of the fish caught in the test fishery. The Port Moller age composition has also been changed to account for the size selectivity of test fishery net.

|  | Age |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
| Sampling location | 1.2 | 1.3 | 2.2 | 2.3 |
| Preseason | 0.32 | 0.39 | 0.16 | 0.13 |
| Catch and esc. | 0.34 | 0.32 | 0.23 | 0.09 |
| Port Moller | 0.36 | 0.42 | 0.16 | 0.07 |

Figure 3: Observed cumulative catch plus escapement to date for the Naknek/Kvichak district (black dots). The solid black line is the projected cumulative run for 2010 assuming normal run timing. The upper and lower dashed lines are the projected cumulative run, assuming the run is one day late or one day early, respectively. The vertical grey line is the average mid-point of the run, and the horizontal red line is the pre-season forecast.


### 3.4 Nushagak

Based on the catch and escapement to date, the Nushagak district is ahead of the preseason forecast (Figure 4). The Nushagak produced a near record return of 1.1 jacks last year and this has materialized into a strong 1.2 return this year (table 7). We would expect the total proportion of 1.2 for the district to increase as a disproportionate number of 1.2 escape the fishery and move past the counting towers.

Table 7: Pre-season and in-season (based on catch and escapement) age composition for the Naknek/Kvichak district. The Port Moller age composition is an aggregate sample of all of the fish caught in the test fishery. The Port Moller age composition has also been changed to account for the size selectivity of test fishery net.

|  | Age |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
| Sampling location | 1.2 | 1.3 | 2.2 | 2.3 |
| Preseason | 0.51 | 0.47 | 0.01 | 0.01 |
| Catch and esc. | 0.42 | 0.57 | 0 | 0 |
| Port Moller | 0.36 | 0.42 | 0.16 | 0.07 |

Figure 4: Observed cumulative catch plus escapement to date for the Nushagak district (black dots). The solid black line is the projected cumulative run for 2010 assuming normal run timing. The upper and lower dashed lines are the projected cumulative run, assuming the run is one day late or one day early, respectively. The vertical grey line is the average mid-point of the run, and the horizontal red line is the pre-season forecast.


